Weight Recursions for Any Rotation Symmetric Boolean Functions
نویسندگان
چکیده
منابع مشابه
Nonlinearity of quartic rotation symmetric Boolean functions
Nonlinearity of rotation symmetric Boolean functions is an important topic on cryptography algorithm. Let e ≥ 1 be any given integer. In this paper, we investigate the following question: Is the nonlinearity of the quartic rotation symmetric Boolean function generated by the monomial x0xex2ex3e equal to its weight? We introduce some new simple sub-functions and develop new technique to get seve...
متن کاملGeneralized Rotation Symmetric and Dihedral Symmetric Boolean Functions - 9 Variable Boolean Functions with Nonlinearity 242
Recently, 9-variable Boolean functions having nonlinearity 241, which is strictly greater than the bent concatenation bound of 240, have been discovered in the class of Rotation Symmetric Boolean Functions (RSBFs) by Kavut, Maitra and Yücel. In this paper, we present several 9-variable Boolean functions having nonlinearity of 242, which we obtain by suitably generalizing the classes of RSBFs an...
متن کاملRotation Symmetric Bent Boolean Functions for n = 2p
It has been conjectured that there are no homogeneous rotation symmetric bent Boolean functions of degree greater than two. In this paper we begin by proving that sums of short-cycle rotation symmetric bent Boolean functions must contain a specific degree two monomial rotation symmetric Boolean function. We then prove most cases of the conjecture in n=2p, p>2 prime, variables and extend this wo...
متن کاملConstruction of Rotation Symmetric Boolean Functions with optimal Algebraic Immunity
En este artículo, presentamos construcciones teóricas de funciones Booleanas de rotación simétrica (RSBFs por sus siglas en inglés) con un número impar de variables y con máxima inmunidad algebraica. Con el objeto de obtener funciones Booleanas de muy alta no linealidad, generalizamos nuestra construcción a una técnica de búsqueda en la clase RSBF. Presentamos así RSBFs con inmunidad algebraica...
متن کاملAffine equivalence of cubic homogeneous rotation symmetric Boolean functions
Homogeneous rotation symmetric Boolean functions have been extensively studied in recent years because of their applications in cryptography. Little is known about the basic question of when two such functions are affine equivalent. The simplest case of quadratic rotation symmetric functions which are generated by cyclic permutations of the variables in a single monomial was only settled in 200...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2018
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2785773